Illustrated Textbook of PEDIATRICS

Highlights
- Exclusive chapter on Pediatric Resuscitation and Emergency Medicine
- Presented with more than 650 clinical photographs
- Includes color atlas on how to perform neurological examination of an infant
- Attractive history panel with every chapter.
Illustrated Textbook of PEDIATRICS

Editor
Indumathy Santhanam
MD DCH
Professor and Head
Department of Pediatric Emergency
Institute of Child Health
Madras Medical College
Chennai, Tamil Nadu, India

Foreword
T Dorairajan

The Health Sciences Publisher
New Delhi | London | Panama
Jaypee Brothers Medical Publishers (P) Ltd

Headquarters
Jaypee Brothers Medical Publishers (P) Ltd
4838/24, Ansari Road, Daryaganj
New Delhi 110 002, India
Phone: +91-11-43574357
Fax: +91-11-43574314
Email: jaypee@jaypeebrothers.com

Overseas Offices
J.P. Medical Ltd
83 Victoria Street, London
SW1H 0HW (UK)
Phone: +44 20 3170 8910
Fax: +44 (0)20 3008 6180
Email: info@jpmedpub.com

Jaypee Brothers Medical Publishers (P) Ltd
17/1-B Babar Road, Block-B, Shaymali
Mohammadpur, Dhaka-1207
Bangladesh
Mobile: +08801912003485
Email: jaypeedhaka@gmail.com

Jaypee-Highlights Medical Publishers Inc
City of Knowledge, Bld. 235, 2nd Floor, Clayton
Panama City, Panama
Phone: +1 507-301-0496
Fax: +1 507-301-0499
Email: cservice@jphmedical.com

Jaypee Brothers Medical Publishers (P) Ltd
Bhotahity, Kathmandu, Nepal
Phone: +977-9741283608
Email: kathmandu@jaypeebrothers.com

Website: www.jaypeebrothers.com
Website: www.jaypeedigital.com

© 2018, Jaypee Brothers Medical Publishers

The views and opinions expressed in this book are solely those of the original contributor(s)/author(s) and do not necessarily represent those of editor(s) of the book.

All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission in writing of the publishers.

All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Medical knowledge and practice change constantly. This book is designed to provide accurate, authoritative information about the subject matter in question. However, readers are advised to check the most current information available on procedures included and check information from the manufacturer of each product to be administered, to verify the recommended dose, formula, method and duration of administration, adverse effects and contraindications. It is the responsibility of the practitioner to take all appropriate safety precautions. Neither the publisher nor the author(s)/editor(s) assume any liability for any injury and/or damage to persons or property arising from or related to use of material in this book.

This book is sold on the understanding that the publisher is not engaged in providing professional medical services. If such advice or services are required, the services of a competent medical professional should be sought.

Every effort has been made where necessary to contact holders of copyright to obtain permission to reproduce copyright material. If any have inadvertently overlooked, the publisher will be pleased to make the necessary arrangements at the first opportunity. The CD/DVD-ROM (if any) provided in the sealed envelope with this book is complimentary and free of cost. Not meant for sale.

Inquiries for bulk sales may be solicited at: jaypee@jaypeebrothers.com

Illustrated Textbook of Pediatrics

First Edition: 2018

Printed at
Dedicated to

My father Sri PCM Santhanam, a karma veer, who tread the path of dharma despite extreme adversity whilst pursuing his goal with unwavering zeal.

Tamaso mā jyotirgamaya
(Lead Me from Darkness to Light)
CONTRIBUTORS

Hemchand K Prasad MD (Ped) PDCC (Ped Endo)
Fellow in Pediatric Endocrinology (ESPE) (Birmingham Children’s Hospital, UK)
Fellow in Pediatric Diabetes (ISPAD) (Washington University, St Louis, USA)
Senior Consultant
Department of Pediatric Endocrinology and Diabetes
Mehta Children’s Hospital
Chennai, Tamil Nadu, India

Indumathy Santhanam MD DCH
Professor and Head
Department of Pediatric Emergency
Institute of Child Health
Madras Medical College
Chennai, Tamil Nadu, India

J Balaji MD
Associate Professor
Department of Pediatrics
Government Dharmapuri Medical College and Hospital
Dharmapuri, Tamil Nadu, India

J Ritchie Sharon Solomon MD DCH DM
Senior Assistant Professor
Department of Pediatric Cardiology
Institute of Child Health and Hospital for Children
Madras Medical College
Chennai, Tamil Nadu, India

K Nedunchelian MD DCH
Former Associate Professor
Department of Pediatrics
Government Dharmapuri Medical College and Hospital
Dharmapuri, Tamil Nadu, India

Leema Pauline MD DCH DM
Professor and Head
Department of Pediatric Neurology
Institute of Child Health
Madras Medical College
Chennai, Tamil Nadu, India

Margaret Chellaraj MD DCH DM (Hematology)
Professor and Head
Department of Hematology
Madras Medical College
Chennai, Tamil Nadu, India

Md Salim Shakur MBBS (DMC, DU) DCH (Glasgow and Dublin)
MRCP (UK) PhD (Nutrition, DU) FRCP (London, Glasgow, Edinburgh)
FRCPCH (UK)
Consultant (Visiting)
Department of Pediatrics
United Hospital Limited
Dhaka, Bangladesh
Formerly
Professor of Pediatric Nutrition and Gastroenterology and Academic Director
Bangladesh Institute of Child Health
Director, Dhaka Shishu (Children) Hospital
Dhaka, Bangladesh

P Ramachandran MD DCH MNAMS
Professor and Former Director
Institute of Child Health and Hospital for Children
Madras Medical College
Chennai, Tamil Nadu, India

Padmesh Vadakepat MD DM
Resident
Institute of Child Health
Madras Medical College
Chennai, Tamil Nadu, India

R Suresh Kumar MD
Senior Assistant Professor
Department of Pediatrics
Institute of Child Health and Hospital for Children
Madras Medical College
Chennai, Tamil Nadu, India

RV Dhanashayani MD (Ped)
Senior Assistant Professor
Department of Pediatrics
Institute of Child Health and Hospital for Children
Madras Medical College
Chennai, Tamil Nadu, India
Illustrated Textbook of Pediatrics

S Sundari MD DCH
Former Director
Institute of Child Health and Hospital for Children
Madras Medical College
Chennai, Tamil Nadu, India

S Thangavelu MD DCH MRCPCH
Former Professor
Department of Pediatrics
Institute of Child Health and Hospital for Children
Madras Medical College
Chennai, Tamil Nadu, India

Sangeetha Yoganandhan MD DNB DM
Associate Professor
Department of Pediatric Neurology and Neurological Sciences
Christian Medical College
Vellore, Tamil Nadu, India

Sarath Balaji MD DCH
Senior Assistant Professor
Department of Pediatrics
Institute of Child Health and Hospital for Children
Madras Medical College
Chennai, Tamil Nadu, India

Shanthi Sangareddi MD DCH
Professor
Department of Pediatric Hematology
Institute of Child Health and Hospital for Children
Madras Medical College
Chennai, Tamil Nadu, India

Srilakshmi Rajagopalan DCH PhD
Associate Professor
Department of Genetics
The Tamil Nadu Dr MGR Medical University
Chennai, Tamil Nadu, India

T Murali MD DCH FPEM
Senior Assistant Professor
Department of Pediatric Emergency
Institute of Child Health
Madras Medical College
Chennai, Tamil Nadu, India

V Poovazhagi MD DCH PhD
Professor and Head
Department of Pediatrics
Government Medical College
Chennai, Tamil Nadu, India

STUDENTS EDITORIAL BOARD (MADRAS MEDICAL COLLEGE)

1. Dr Vignesh S MD RD
2. Dr Veena Unni MS
3. Dr Varshini Ramesh DNB Ophthal
4. Dr Sai Siva MD
FOREWORD

It is a pleasure to write the foreword for this *Illustrated Textbook of Pediatrics* for the undergraduate students. This concise book is written by the experienced teaching faculty from the Institute of Child Health attached to the Madras Medical College, Chennai, Tamil Nadu, India. The lucid prose, clear diagrams and timelines make this an attractive and enchanting book for the medical students entering pediatric practice.

Understanding disease processes in children requires a robust grasp of physiology, anatomy and biochemistry. More often than not, basic sciences is forgotten by the time the student reaches clinical postings. I am happy to note that this book has made an attempt to bridge this gap. The correlation, which this book attempts, is so crucial in the understanding of disease processes.

The medical community of today, stand on the shoulders of giants. It is a pleasure to note the importance given to pioneers and scientists who have made valuable contributions to our understanding of medicine.

The chapter on how to resuscitate critically ill children with comprehensive clinical photographs, is one more unique feature. The chapter on “how to examine the central nervous system of an infant” is another special feature. As one reads this book, one gets the impression that each one of the contributors have shared a tremendous passion for sharing their expertise with students.

This textbook contains excellent information that is relevant to the Indian subcontinent. I wish this edition all success.

T Dorairajan MS FRACS

An alumni of Madras Medical College, trained in Pediatric Surgery in 1961 in Melbourne Royal Children’s Hospital

In a meritorious career spanning five decades, he spearheaded excellence in surgical care of children in India
PREFACE

Way back in the 1980s, undergraduates (UGs) rotated for 3 months every year in medicine, surgery, and obstetrics and gynecology. Medical students would rush to reach the outpatient department (OPD) before 7 am. It was not uncommon for a patient to be auscultated concurrently by several eager students. In the dark and dingy OPD, teeming with patients, we jostled to hear what our teachers taught. Those of us, not close enough, were eagerly sought by residents, who would point us to other interesting cases. Assistant professors, residents, final years’ students and house officers would vie with each other to teach us. A large number of students would prefer festival days to come to the hospital, since the OPD was less crowded and teachers would have more time to teach. Hutchinson was a constant pocket companion. Evening classes by duty surgeons and physicians were the norm. Harrison, Robbins, Ganong, Katzung, Harper, Goodman Gilman were treasured. Students who could recap from these books were revered! It was not easy to pass medical examinations, perhaps resulting in a robust foundation in clinical medicine!

Spending time with patients in the OPD and in the wards, helped develop values important in the practise of medicine, handle clinical responsibilities, do tedious tasks, empathise with patients and interact with colleagues to improve patient care.

Fast forward into the now: As per the Medical Council of India (MCI) norms, the continuous 3-month postings in core subjects have been eliminated. Case discussions have been shifted from the real world into the OPD classroom. Separate teachers are unavailable for every batch, resulting in poor exposure for the first and second year students. Students, tend to skip OPD and ward sessions, preferring to enrol for postgraduate (PG) preparation. Interest in clinical medicine appears to have waned. Medical information and technology has exponentially increased. Standard textbooks have been replaced by on-line resources. Inundated with voluminous information, and lacking in sustained clinical exposure, the young medico is unable to understand foundation facts. On the contrary, passing UG examinations has never been so easy! Perhaps, as a result of this malady, the majority who entered residency, seemed woefully under prepared for postgraduate training.

Hence, when I received a call from the M/s Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, India in 2015 requesting to write an undergraduate textbook of pediatrics, I agreed.

The Madras Medical College, established in 1835, has an annual intake of 250 undergraduates and around 50 postgraduates. Sharing a common concern, a group of motivated and talented pediatricians primarily from the Institute of Child Health, Madras Medical College, Chennai, Tamil Nadu, India agreed to work towards creating a resource for undergraduates.

The focus would be to make it simple, attractive with an emphasis on understanding the relationship between basic science with clinical medicine. Pretty cartoons were included to make complex facts, easy to understand. History panels were designed to provide the young medico a reminder of our past.

A chapter on Emergency Medicine was added. Infectious diseases were pictorially represented with time lines. An atlas of neurological examination of an infant was added. The national programs were presented with an emphasis on the understanding on life cycles of vectors. Potentially dull topics, such as fluid and electrolytes, acid-base balance and diabetes ketoacidosis, were made immensely attractive. All topics were edited with the intention of making every aspect of pediatrics a passion!

It is our hope that this book will help in a big way to achieve our collective dream to inspire and reach out to the next generation medicos!

The royalties from this book will go to SEH Trust which will be donated for the care and academic activities in relationship to the critically ill children in the Pediatric Emergency Department of the Institute of Child Health, Madras Medical College.

Indumathy Santhanam
ACKNOWLEDGMENTS

I thank my colleagues at the Institute of Child Health, Madras Medical College (MMC), Chennai, Tamil Nadu, India, for their huge support and effort taken to create this resource. I thank Dr Vijayalakshmi MD DMRD, Professor, Department of Pediatric Radiology, Institute of Child Health and Hospital for Children, Madras Medical College, Chennai, Tamil Nadu, India, for sharing her expertise and collection of radiological images for this book. I am extremely grateful to Dr B Ramesh Babu MD DCH (Ped), Associate Professor, Department of Pediatrics, Government Dharmapuri Medical College and Hospital, Dharmapuri, Tamil Nadu, India, whose generosity in sharing pictures from the Department of Neonatology, Government Dharmapuri Medical College and Hospital, has vastly enriched the content.

I also thank the parents who gave consent to take pictures and use them for educational purposes.

I thank the MMC students' editorial committee, Dr Vignesh, Dr Veena, Dr Varshini and Dr Sai Siva, for checking out the chapters for clarity and cuteness index!

My thanks to Dr Sharada Satish and Dr Akila, who helped in proofreading some of the chapters.

My deepest gratitude to my best friend, Dr Ramesh Dorairajan, my daughter Varshini Ramesh, my parents, Subashini and Kicchamma, who never let me forget that this book should inspire and enlighten the next generation of young medicos.

My special thanks to Shri Jitendar P Vij (Group Chairman), Mr Ankit Vij (Group President), Ms Ritu Sharma (Director-Content Strategy), Ms Chetna Malhotra Vohra (Associate Director-Content Strategy), Dr Madhu Choudhary (Senior Content Strategist), Ms Sunita Katla (PA to Group Chairman and Publishing Manager), Mr Manish Pahuja (General Manager-Production), Mr Sumit Kumar (Team Leader-Designers, Production), Mr Laxmidhar Padhiary (Proofreader) and Mr Kapil Dev Sharma (DTP Operator), for making this book possible. Ms Ritu Sharma and Dr Madhu Choudhary have virtually resuscitated this textbook. Their prompt response, dedication and excellence in medical editing helped us achieve our collective goals for quality.
CONTENTS

Chapter 1. Growth and Development
Md Salim Shakur, K Nedunchelian
 Phases of Growth 1
 Factors Influencing Growth 2
 Physiology 2
 Effects of Growth Hormone 2
 Assessment of Growth 3
 Growth 4
 Bone Age 6
 Growth Disorders 7
 Principles of Development 7
 Domains of Development 7
 Developmental Assessment 10

Chapter 2. Nutrition and its Disorders
Md Salim Shakur, K Nedunchelian
 NUTRITION 12
 Nutritional Requirements 12
 Nutrients 13
 Consequences of Undernutrition 15
 Malnutrition 16
 Clinical Features 20
 Management 21
 Steps of Management 23
 Basic Requirements for Community-Based Management of SAM 29
 Enrolment in Community-Based Management of MAM 32
 BODY COMPOSITION 32
 VITAMIN DEFICIENCIES AND THEIR TREATMENT 33
 Vitamin A 33
 Vitamin B Complex 33
 VITAMIN A 37
 Global Perspective 37
 Absorption and Metabolism 37
 Sources of Vitamin A 37
 Clinical Features 38
 Treatment 39
 Prevention 39
 Guidelines for Vitamin A Supplementation 39
 VITAMIN D 40
 Vitamin D Metabolism 40
 Vitamin D Deficiency 41
 Vitamin D Deficiency (Nutritional Rickets) 41

Chapter 3. Genetics
Srilakshmi Rajagopalan
 Mendel’s Laws of inheritance 58
 Genetic Disorders 59
 Genetic Testing 61
 Selected Chromosomal Disorders 62
 Management of Genetic Diseases 65

Chapter 4. Neonatology
Indumathy Santhanam, Padmesh Vadakepat
 Current Advances in Ventilatory Care 68
 Terminology 69
 Statistical Indices 69
 Antenatal Investigation 70
 Newborn Screening 70
 Polyhydramnios 73

1 IRON DEFICIENCY AND IRON-DEFICIENCY ANEMIA 44
 Pathophysiology 44
 Dietary Sources of Iron 45
 Stages of Iron Deficiency 45
 Iron Deficiency Anemia 45

ZINC 47
 Role of Zinc 48
 Dietary Intake and Absorption 48
 Distribution 48
 Zinc and Diarrhea 48

FAILURE TO THRIVE 49
 Causes 49
 Management 49
 Prognosis 50

EATING DISORDERS 50
 Anorexia Nervosa 50
 Etiology 50
 Diagnostic Features 50
 Treatment 51
 Bulimia Nervosa 51
 Management 51

OBESITY AND OVERWEIGHT 51
 Pathogenesis of Obesity 51
 Adipose Tissue and Adipokines 52
 Classification of Overweight and Obesity 52
 Life Style Intervention 52
 Pharmacological Intervention 53
 Surgical Intervention 53

Jaypee Brothers
Oligohydramnios 73
Early Identification of Hearing Loss 75
Role of Neonatal Screening for Prevention of Mental Retardation 78
An Approach to Inborn Errors of Metabolic Syndromes 78
Phenylketonuria 80
Galactosemia 80
Homocystinuria (Autosomal Recessive) 81
Tyrosinemia (Autosomal Recessive) 82
Disorders of Ammonia Metabolism 82
Twin Pregnancy 83
History Taking of Newborn Infants and Newborn Examination 83
When do You Designate a Baby as Term Normal Newborn? 97
Checklist for First 24 Hours of Life 97
Rapid Cardiopulmonary Cerebral Assessment to Find Out Whether the Neonate is Well or Sick 97
Head-to-Toe Examination 97
Routine Care of the Newborn Just After Delivery 98
CARE FOLLOWING BIRTH 99
Breastfeed 99
Warmth 99
Cord Care 99
Urine and Meconium 99
Immunization 100
Vitamin K 100
Evaluation of Birth Injury and Scalp Swelling 100
Caput Succedaneum 100
Cephalohematoma 101
Subaponeurotic Hemorrhage 102
INFANT AND YOUNG CHILD FEEDING 104
Breastfeeding and Complementary Feeding 104
Kangaroo Mother Care 107
Mistaken Beliefs: Barriers to Normal Breastfeeding Initiation 108
Positioning and Attachment 108
Measures that Aid in Optimizing Breastfeeding Practices 109
Hiv Infection and Breastfeeding 110
CONTRAINICATION OF BREASTFEEDING 111
How Breastfeeding can Help Achieving MDGs? 111
Breastfeeding in Special Situations 112
Breastfeeding Twins and High Multiples 114
Problems with Breastfeeding which May Cause Failure of Breastfeeding 115
Relactation 117
COMMON BREAST PROBLEMS 118
Inverted/Flat Nipples 118
Sore/Cracked/Fissured Nipple 118
Breast Engorgement 118
Blocked Duct 118
Mastitis/Breast Abscess 119
COMPLEMENTARY FEEDING 119
Ideal Characteristics of Complementary Feeding 119
Preterm, Low Birthweight and Intrauterine Growth Restriction 121
Terminology Related to Low Birthweight 121
Types of IUGR 122
Normal Growth and Retarded Growth of Fetus During Pregnancy 122
Risk of Preterm Low Birthweight Babies 125
Environmental Factors Associated with LBW 127
ASSESSMENT OF IUGR AND LBW 129
Investigations 129
Management 129
SPECIAL CARE OF THE PRETERM LBW (VLBW) 129
Prevent Infection 129
Maintain Warmth 130
Kangaroo Mother Care 130
Fluid and Electrolyte Management 130
Feeding Management 130
Vitamin K Prophylaxis 131
Other Vitamins and Micronutrient Supplementation 131
Low Birthweight: Identification and Management of the Preterm Low Birthweight Baby 133
More Serious Complications: Brain Injury 134
PERSISTENT DUCTUS ARTERIOSUS IN PRETERM 141
Effects of PDA 141
Clinical Features 141
Investigations 141
Management 141
NECROTIZING ENTEROCOLITIS 142
Epidemiology 142
Etiology and Pathogenesis 142
Pathology 142
Clinical Features 142
Differential Diagnosis 143
Investigation 143
Imaging 143
Management 143
Prognosis 146
Long-Term Complications 146
Respiratory Distress 146
Other Causes of Respiratory Distress 146
Transient Tachypnea of Newborn 146
APNEA OF PREMATURITY 147
Clinical Features 147
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiologies 147</td>
<td></td>
</tr>
<tr>
<td>Management 148</td>
<td></td>
</tr>
<tr>
<td>CONGENITAL PNEUMONIA 148</td>
<td></td>
</tr>
<tr>
<td>Diagnosis of Congenital Pneumonia/Sepsis 148</td>
<td></td>
</tr>
<tr>
<td>RESPIRATORY DISTRESS SYNDROME 149</td>
<td></td>
</tr>
<tr>
<td>Clinical Features 149</td>
<td></td>
</tr>
<tr>
<td>Pathophysiology 149</td>
<td></td>
</tr>
<tr>
<td>Autopsy 150</td>
<td></td>
</tr>
<tr>
<td>Risk Factors of RDS 150</td>
<td></td>
</tr>
<tr>
<td>Factors that Stimulate Surfactant Production 150</td>
<td></td>
</tr>
<tr>
<td>Diagnosis 150</td>
<td></td>
</tr>
<tr>
<td>Management: Prevention and Treatment 150</td>
<td></td>
</tr>
<tr>
<td>ASPIRATION OF FEEDS 154</td>
<td></td>
</tr>
<tr>
<td>Clinical Features 154</td>
<td></td>
</tr>
<tr>
<td>Diagnosis 154</td>
<td></td>
</tr>
<tr>
<td>PNEUMOTHORAX 154</td>
<td></td>
</tr>
<tr>
<td>Clinical Features 154</td>
<td></td>
</tr>
<tr>
<td>Diagnosis 154</td>
<td></td>
</tr>
<tr>
<td>Treatment 155</td>
<td></td>
</tr>
<tr>
<td>Prevention 155</td>
<td></td>
</tr>
<tr>
<td>Pulmonary Interstitial Emphysema 155</td>
<td></td>
</tr>
<tr>
<td>Bronchopulmonary Dysplasia 155</td>
<td></td>
</tr>
<tr>
<td>MECONIUM ASPIRATION SYNDROME 158</td>
<td></td>
</tr>
<tr>
<td>Clinical Features 158</td>
<td></td>
</tr>
<tr>
<td>Diagnosis: Meconium Aspiration Syndrome 158</td>
<td></td>
</tr>
<tr>
<td>Prevention or Antenatal Management 158</td>
<td></td>
</tr>
<tr>
<td>Cardiopulmonary Cerebral Assessment 158</td>
<td></td>
</tr>
<tr>
<td>General Assessment 159</td>
<td></td>
</tr>
<tr>
<td>History 159</td>
<td></td>
</tr>
<tr>
<td>Investigations 159</td>
<td></td>
</tr>
<tr>
<td>Treatment 159</td>
<td></td>
</tr>
<tr>
<td>Complications 159</td>
<td></td>
</tr>
<tr>
<td>Prognosis 159</td>
<td></td>
</tr>
<tr>
<td>CONGENITAL DIAPHRAGMATIC HERNIA 160</td>
<td></td>
</tr>
<tr>
<td>Clinical Features 160</td>
<td></td>
</tr>
<tr>
<td>Investigations 160</td>
<td></td>
</tr>
<tr>
<td>Differential Diagnosis 160</td>
<td></td>
</tr>
<tr>
<td>Treatment: Supportive 160</td>
<td></td>
</tr>
<tr>
<td>TRACHEOESOPHAGEAL FISTULA 161</td>
<td></td>
</tr>
<tr>
<td>Clinical Features 161</td>
<td></td>
</tr>
<tr>
<td>Epidemiology 161</td>
<td></td>
</tr>
<tr>
<td>Association 161</td>
<td></td>
</tr>
<tr>
<td>Types 161</td>
<td></td>
</tr>
<tr>
<td>Investigation 162</td>
<td></td>
</tr>
<tr>
<td>Treatment 162</td>
<td></td>
</tr>
<tr>
<td>Prognosis 162</td>
<td></td>
</tr>
<tr>
<td>PULMONARY HYPERTENSION AND PERSISTENT PULMONARY HYPERTENSION 163</td>
<td></td>
</tr>
<tr>
<td>Clinical Features 163</td>
<td></td>
</tr>
<tr>
<td>Diagnosis 163</td>
<td></td>
</tr>
<tr>
<td>Pathogenesis 163</td>
<td></td>
</tr>
<tr>
<td>Etiologies 163</td>
<td></td>
</tr>
<tr>
<td>Clinical Presentation 164</td>
<td></td>
</tr>
<tr>
<td>Investigations 165</td>
<td></td>
</tr>
<tr>
<td>Treatment 165</td>
<td></td>
</tr>
<tr>
<td>Congenital Heart Disease Presenting as Respiratory Distress in Newborn 165</td>
<td></td>
</tr>
<tr>
<td>Investigations 166</td>
<td></td>
</tr>
<tr>
<td>RETINOPATHY OF PREMATURITY 167</td>
<td></td>
</tr>
<tr>
<td>Risk Factors 167</td>
<td></td>
</tr>
<tr>
<td>Pathogenesis 167</td>
<td></td>
</tr>
<tr>
<td>International Classification of Rop 167</td>
<td></td>
</tr>
<tr>
<td>Management 167</td>
<td></td>
</tr>
<tr>
<td>Prognosis 167</td>
<td></td>
</tr>
<tr>
<td>METABOLIC BONE DISEASE OF PRETERM BABY (OSTEOPENIA OF PREMATURITY) 169</td>
<td></td>
</tr>
<tr>
<td>Pathogenesis 169</td>
<td></td>
</tr>
<tr>
<td>Chemical 169</td>
<td></td>
</tr>
<tr>
<td>Radiological Change 169</td>
<td></td>
</tr>
<tr>
<td>Management 169</td>
<td></td>
</tr>
<tr>
<td>Prognosis 169</td>
<td></td>
</tr>
<tr>
<td>ANEMIA OF PREMATURITY 169</td>
<td></td>
</tr>
<tr>
<td>Clinical Features 170</td>
<td></td>
</tr>
<tr>
<td>Diagnosis 170</td>
<td></td>
</tr>
<tr>
<td>Management 170</td>
<td></td>
</tr>
<tr>
<td>BIRTH ASPHYXIA (INTRAPARTUM AND PERIPARTUM): HYPOXIC-ISCHEMIC ENCEPHALOPATHY 171</td>
<td></td>
</tr>
<tr>
<td>Introduction 171</td>
<td></td>
</tr>
<tr>
<td>Definition 171</td>
<td></td>
</tr>
<tr>
<td>Causes 172</td>
<td></td>
</tr>
<tr>
<td>Pathophysiology 172</td>
<td></td>
</tr>
<tr>
<td>Clinical Features 174</td>
<td></td>
</tr>
<tr>
<td>Laboratory Studies 175</td>
<td></td>
</tr>
<tr>
<td>Management 175</td>
<td></td>
</tr>
<tr>
<td>RESUSCITATION OF NEWBORN AT BIRTH 176</td>
<td></td>
</tr>
<tr>
<td>Before Delivery 176</td>
<td></td>
</tr>
<tr>
<td>During Delivery 177</td>
<td></td>
</tr>
<tr>
<td>Postresuscitation Care 180</td>
<td></td>
</tr>
<tr>
<td>NEONATAL SEPSIS 182</td>
<td></td>
</tr>
<tr>
<td>Epidemiology and Etiology 182</td>
<td></td>
</tr>
<tr>
<td>Etiology 183</td>
<td></td>
</tr>
<tr>
<td>Early-Onset Sepsis and Late-Onset Sepsis 183</td>
<td></td>
</tr>
<tr>
<td>Recognition and Management of Septic Shock 185</td>
<td></td>
</tr>
<tr>
<td>Adjunct Therapy 185</td>
<td></td>
</tr>
<tr>
<td>Fresh Blood Transfusion/Packed Red Blood Cell/Fresh Frozen Plasma 185</td>
<td></td>
</tr>
<tr>
<td>General Principles 185</td>
<td></td>
</tr>
<tr>
<td>Prevention of Infection 187</td>
<td></td>
</tr>
<tr>
<td>Management of Neonatal Sepsis 189</td>
<td></td>
</tr>
<tr>
<td>Identification of Neonatal Sepsis: Danger Signs 189</td>
<td></td>
</tr>
<tr>
<td>CONGENITAL INFECTION 192</td>
<td></td>
</tr>
<tr>
<td>Clinical Features 192</td>
<td></td>
</tr>
<tr>
<td>Investigations 193</td>
<td></td>
</tr>
<tr>
<td>Perinatally Acquired Hepatitis B Infection 193</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Topic</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>195</td>
<td>DELAYED PASSAGE OF MECONIUM</td>
</tr>
<tr>
<td>195</td>
<td>Meconium Ileus</td>
</tr>
<tr>
<td>195</td>
<td>How Will You Investigate?</td>
</tr>
<tr>
<td>196</td>
<td>NEONATAL JAUNDICE</td>
</tr>
<tr>
<td>196</td>
<td>Why Jaundice is More in Newborn?</td>
</tr>
<tr>
<td>196</td>
<td>Criteria for Physiological Jaundice</td>
</tr>
<tr>
<td>196</td>
<td>Criteria for Pathological Jaundice</td>
</tr>
<tr>
<td>196</td>
<td>Causes</td>
</tr>
<tr>
<td>197</td>
<td>Hyperbilirubinemia</td>
</tr>
<tr>
<td>200</td>
<td>Clinical Approach and Investigation to Diagnose Neonatal Jaundice</td>
</tr>
<tr>
<td>200</td>
<td>Treatment of Unconjugated Hyperbilirubinemia</td>
</tr>
<tr>
<td>200</td>
<td>RhD Hemolytic Disease of Newborn</td>
</tr>
<tr>
<td>204</td>
<td>Hemolytic Disease of Newborn due to Non-Rh Incompatibility, Mostly Abo Incompatibility</td>
</tr>
<tr>
<td>205</td>
<td>Other Causes of Hemolytic Disorder of Newborn Causing Early Neonatal Jaundice</td>
</tr>
<tr>
<td>205</td>
<td>Neonatal Jaundice due to Hemoglobinopathy</td>
</tr>
<tr>
<td>205</td>
<td>Diagnosis of Severe Jaundice</td>
</tr>
<tr>
<td>206</td>
<td>Breast Milk Jaundice—Clinical Indicators</td>
</tr>
<tr>
<td>206</td>
<td>Conjugated or Direct Hyperbilirubinemia (Cholestatic Jaundice)</td>
</tr>
<tr>
<td>207</td>
<td>Neonatal Cholestatic Jaundice</td>
</tr>
<tr>
<td>208</td>
<td>Biliary Atresia</td>
</tr>
<tr>
<td>209</td>
<td>EVALUATION OF LARGE FOR DATE TERM NEONATES—LGA BABIES</td>
</tr>
<tr>
<td>209</td>
<td>Causes</td>
</tr>
<tr>
<td>209</td>
<td>INFANT OF DIABETIC MOTHER</td>
</tr>
<tr>
<td>209</td>
<td>Pathophysiology</td>
</tr>
<tr>
<td>210</td>
<td>Treatment</td>
</tr>
<tr>
<td>211</td>
<td>HYPOGLYCEMIA (NEONATAL)</td>
</tr>
<tr>
<td>211</td>
<td>Physiology: Glucose Homeostasis</td>
</tr>
<tr>
<td>212</td>
<td>Pathophysiology of Decreased Glucose Availability</td>
</tr>
<tr>
<td>213</td>
<td>Clinical Features</td>
</tr>
<tr>
<td>213</td>
<td>Investigations</td>
</tr>
<tr>
<td>213</td>
<td>Treatment of Hypoglycemia</td>
</tr>
<tr>
<td>215</td>
<td>NEONATAL CONVULSION</td>
</tr>
<tr>
<td>215</td>
<td>Clinical Features</td>
</tr>
<tr>
<td>215</td>
<td>Etiology and Timing of Onset of Neonatal Convulsion</td>
</tr>
<tr>
<td>215</td>
<td>Benign Seizure in Neonates</td>
</tr>
<tr>
<td>215</td>
<td>Investigations</td>
</tr>
<tr>
<td>217</td>
<td>Protocol for the Management of Neonatal Seizures in the Emergency</td>
</tr>
<tr>
<td>219</td>
<td>VITAMIN K DEFICIENCY BLEEDING (HEMORRHAGIC DISEASE OF NEWBORN)</td>
</tr>
<tr>
<td>219</td>
<td>Pathogenesis</td>
</tr>
<tr>
<td>219</td>
<td>Clinical Features</td>
</tr>
<tr>
<td>219</td>
<td>Classification</td>
</tr>
<tr>
<td>219</td>
<td>Types of Bleeding</td>
</tr>
<tr>
<td>219</td>
<td>Investigations</td>
</tr>
<tr>
<td>219</td>
<td>Management</td>
</tr>
<tr>
<td>220</td>
<td>Treatment During Active Bleeding</td>
</tr>
<tr>
<td>220</td>
<td>Congenital Heart Diseases in Newborn</td>
</tr>
<tr>
<td>221</td>
<td>Heart Failure During Neonatal Period</td>
</tr>
<tr>
<td>223</td>
<td>NEONATAL SURGICAL CONDITIONS</td>
</tr>
<tr>
<td>223</td>
<td>Duodenal Atresia</td>
</tr>
<tr>
<td>224</td>
<td>Small Bowel Atresias (Jejunal and Ileal Atresia)</td>
</tr>
<tr>
<td>225</td>
<td>Malrotation and Volvulus</td>
</tr>
<tr>
<td>226</td>
<td>Anorectal Anomalies</td>
</tr>
<tr>
<td>228</td>
<td>HIRSCHSPRUNG’S DISEASE</td>
</tr>
<tr>
<td>228</td>
<td>Pathology</td>
</tr>
<tr>
<td>228</td>
<td>Pathogenesis</td>
</tr>
<tr>
<td>228</td>
<td>Type—According to Length Affected</td>
</tr>
<tr>
<td>228</td>
<td>Epidemiology</td>
</tr>
<tr>
<td>228</td>
<td>Clinical Features (Typical)</td>
</tr>
<tr>
<td>228</td>
<td>Rectal Examination</td>
</tr>
<tr>
<td>228</td>
<td>Investigations</td>
</tr>
<tr>
<td>228</td>
<td>Management</td>
</tr>
<tr>
<td>228</td>
<td>Prognosis</td>
</tr>
<tr>
<td>228</td>
<td>Anterior Abdominal Wall Defects</td>
</tr>
<tr>
<td>231</td>
<td>DRUGS USED IN NEONATOLOGY</td>
</tr>
<tr>
<td>231</td>
<td>Emergency Drugs</td>
</tr>
<tr>
<td>237</td>
<td>Chapter 5. Gastroenterology</td>
</tr>
<tr>
<td>238</td>
<td>DIARRHEA</td>
</tr>
<tr>
<td>238</td>
<td>Clinical Types of Diarrheal Disease</td>
</tr>
<tr>
<td>238</td>
<td>Etiology of Acute Diarrhea</td>
</tr>
<tr>
<td>238</td>
<td>Approach to Diagnosis</td>
</tr>
<tr>
<td>240</td>
<td>Management (WHO/IMNCI Guideline)</td>
</tr>
<tr>
<td>242</td>
<td>Rotavirus Gastroenteritis</td>
</tr>
<tr>
<td>244</td>
<td>Invasive Diarrhea</td>
</tr>
<tr>
<td>244</td>
<td>Shigella</td>
</tr>
<tr>
<td>246</td>
<td>Advances in the Management of Diarrhea</td>
</tr>
<tr>
<td>248</td>
<td>Dyselectrolytemia Associated with Diarrhea and Dehydration</td>
</tr>
<tr>
<td>250</td>
<td>PERSISTENT DIARRHEA</td>
</tr>
<tr>
<td>250</td>
<td>Management</td>
</tr>
<tr>
<td>252</td>
<td>CHRONIC DIARRHEA</td>
</tr>
<tr>
<td>252</td>
<td>Pathophysiology</td>
</tr>
<tr>
<td>253</td>
<td>Causes</td>
</tr>
<tr>
<td>253</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>253</td>
<td>Treatment</td>
</tr>
<tr>
<td>253</td>
<td>Malabsorption</td>
</tr>
<tr>
<td>254</td>
<td>Toddler Diarrhea</td>
</tr>
<tr>
<td>254</td>
<td>PROBIOTICS</td>
</tr>
<tr>
<td>255</td>
<td>GASTROESOPHAGEAL REFLUX AND GASTROESOPHAGEAL REFLUX DISEASE</td>
</tr>
<tr>
<td>255</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>256</td>
<td>Treatment of Mild GERD</td>
</tr>
<tr>
<td>257</td>
<td>Management of Severe GERD</td>
</tr>
</tbody>
</table>
CYCLICAL VOMITING SYNDROME 257
Presentation 257
Bulimia 258
Rumination 258
INTESTINAL PARASITES 258
Clinical features 258
Amebiasis 258
Giardiasis 261
Tapeworms (Teniasis) 261
Hydatid Disease 262
Hookworm 262
Roundworm 263
Pinworm/Threadworm 264
Whipworm 265
Helicobacter pylori Infection 266
COW’S MILK INTOLERANCE AND COW’S MILK PROTEIN ALLERGY 266
Adverse Reaction to Cow’s Milk 266
Lactose Intolerance 267
Diagnosis 267
Treatment 267
CONSTIPATION 267
Causes 268
Examination 268
Investigation 268
Management Strategies 269
RECURRENT ABDOMINAL PAIN 269
Nonorganic 269
Pathophysiology 269
Functional Abdominal Pain 270
Organic Causes 270
Physical Examination 270
Laboratory Investigations 270
Management 271
ACUTE APPENDICITIS 271
Appendicitis in Children 271
Epidemiology 271
Clinical Presentation 271
Laboratory Investigations 272
Treatment 272
INTUSSUSCEPTION 272
Epidemiology and Etiopathology 272
Clinical Features 272
Investigation 273
Management 273
INGUINAL HERNIA 273
Chapter 6. Hepatology 278
Md Salim Shakur
Acute Viral Hepatitis 278
Hepatitis A 279
Hepatitis B 280
Hepatitis C 285
Hepatitis D 287
Hepatitis E 287
Liver Failure 288
Fulminant Liver Failure 288
Chronic Liver Disease 291
Metabolic Liver Disease 295
Nonalcoholic Fatty Liver Disease 297
Wilson’s Disease 298
Glycogen Storage Diseases 299
Portal Hypertension 302
Liver Transplantation 306
Chapter 7. Respiratory System 309
Sarath Balaji, RV Dhakshayani, Indumathy Santhanam
Fetal Lung Development 309
Upper Airway 310
Lower Airway 311
Pulmonary Physiology 312
Pulmonary Gas Exchange 313
Assessment of Pulmonary Function 314
Evaluating Hypoxemia and Hypercapnia 315
Acid-Base Balance Involving Respiratory System 317
Pulmonary Mechanics 317
Important Terms and Values in Pulmonary Mechanics 317
Control of Breathing 318
Respiratory Failure 318
Clinical Pulmonology 318
Symptom Analysis 319
Examination of the Respiratory System 321
General Imaging Approach 325
Bronchoscopy 327
Pulmonary Function Tests 327
Peak Flow Meter 329
Sweat Chloride Test 329
Congenital Airway Abnormalities 329
Laryngomalacia 330
Congenital Subglottic Stenosis 330
Paralysis of Vocal Cords 331
Tracheoesophageal Fistula 331
Congenital Lung Malformations 331
Pulmonary Agenesis or Hypoplasia 331
Bronchogenic Cyst 331
Congenital Pulmonary Airway Malformation 331
Congenital Lobar Emphysema 331
Pulmonary Sequestration 331
Vascular Ring 332
Stridor 332
Acute Epiglottitis 333
Tetralogy of Fallot 440
Pulmonary Atresia with Ventricular Septal Defect 443
Complete Transposition of the Great Arteries 443
Tricuspid Atresia 444
Truncus Arteriosus 446
Total Anomalous Pulmonary Venous Return 447
Ebstein's Anomaly 448

ACQUIRED HEART DISEASES 450
Rheumatic Fever 450

RHEUMATIC HEART DISEASE 456
Mitril Regurgitation (Leaky Mitral Valve) 456
Mitril Stenosis 457
Aortic Regurgitation 458
Aortic Stenosis 460
Tricuspid Regurgitation 460
Diagnostic Problems Associated with Rheumatic Heart Disease 461
Infective Endocarditis 461
Important Pediatric Cardiac Arrhythmias 465
Cardiomyopathies 468
Kawasaki Disease 468

Chapter 9. Immunization 472
P Ramachandran, Indumathy Santhanam
Types of Vaccines 473
Response After Immunization 473
Technique of Vaccine Administration 473
Cold Chain 474
Adverse Events Following Immunization 475
Contraindications for Vaccination 475
National Immunization Schedule 475

Chapter 10. Infectious Diseases 479
V Poovazhagi
Acute Febrile Illness 479

VIRAL INFECTIONS 481
Influenza (FLU) 481
Measles 482
Varicella Zoster 486
Herpes Zoster (Shingles) 486
Mumps 488
Rubella 489
Cytomegalovirus Infection 492
Herpes Simplex Virus Infection 493
Dengue 495
Poliomyelitis 495
Rotavirus Diarrhea 498
Rabies 499
Human Immunodeficiency Virus 501

BACTERIAL INFECTIONS 506
Enteric Fever 506
Diphtheria 508
Pertussis (Whooping Cough) 509
Tetanus 512
Staphylococcal Infections 513
Streptococcal Infections 515
Pneumococcal Infection 517
Meningococcal Infection 518
Haemophilus influenzae 519
Anthrax 521
Leprosy 522
Rickettsial Infection 524

PARASITIC DISEASES 526
Leishmaniasis 526
Malaria 528
Toxoplasmosis 530

Chapter 11. Nephrology 533
RV Dhakshayani, R Suresh Kumar
Renal System 533

DISORDERS OF RENAL SYSTEM 538
Disorders of Renal Development 538
Structural Anomalies of the Urinary Tract 540
Disorders of Pelvis and Ureters 541
Inguinoscrotal Disorders 543
Urinary Tract Infection 545
Vesicoureteric Reflux 550
Disorders of Glomerular Function 553
Glomerulonephritis 562
Renal Involvement in Henoch-Schönlein Purpura 567
Systemic Lupus Erythematosus 568
Lupus Nephritis 568
Membranous Nephropathy 570
Membranoproliferative Glomerulonephritis 573
Rapidly Progressive Glomerulonephritis 574
Disorders of Renal Tubules 575
Hemolytic Uremic Syndrome 579
Enuresis 583
Disorders of Electrolytes Relevant to Renal Disease 585
Acute Kidney Injury 591
Chronic Kidney Disease 595
Peritoneal Dialysis 596

Chapter 12. Pediatric Endocrinology 601
Hemchand K Prasad
General Principles of Hormone Production, Regulation and Action 601
Growth and its Disorders 602
What is Short Stature? 604
DIABETES INSIPIDUS 617
Clinical Features 617
Procedure 617
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>618</td>
<td>THYROID GLAND AND ITS DYSFUNCTION</td>
</tr>
<tr>
<td>618</td>
<td>Applied Physiology</td>
</tr>
<tr>
<td>618</td>
<td>Biosynthesis of Thyroid Hormones</td>
</tr>
<tr>
<td>618</td>
<td>Regulation of Thyroid Hormone</td>
</tr>
<tr>
<td>619</td>
<td>Congenital Hypothyroidism</td>
</tr>
<tr>
<td>622</td>
<td>Juvenile Hypothyroidism and Goiter</td>
</tr>
<tr>
<td>626</td>
<td>Hyperthyroidism</td>
</tr>
<tr>
<td>629</td>
<td>PUBERTY</td>
</tr>
<tr>
<td>629</td>
<td>Applied Physiology</td>
</tr>
<tr>
<td>629</td>
<td>Components of Puberty</td>
</tr>
<tr>
<td>629</td>
<td>Physiology of Puberty</td>
</tr>
<tr>
<td>630</td>
<td>Pubertal Staging</td>
</tr>
<tr>
<td>630</td>
<td>Disorders of Puberty</td>
</tr>
<tr>
<td>630</td>
<td>Delayed Puberty</td>
</tr>
<tr>
<td>630</td>
<td>Precocious Puberty</td>
</tr>
<tr>
<td>636</td>
<td>Normal Variants in Puberty</td>
</tr>
<tr>
<td>637</td>
<td>DEVELOPMENT OF GENITALIA AND SEX DIFFERENTIATION</td>
</tr>
<tr>
<td>637</td>
<td>Basic Physiology</td>
</tr>
<tr>
<td>638</td>
<td>Genes and Sex Determination</td>
</tr>
<tr>
<td>638</td>
<td>Sexual Differentiation</td>
</tr>
<tr>
<td>639</td>
<td>Disorders of Sex Development</td>
</tr>
<tr>
<td>646</td>
<td>ADRENAL GLAND AND ITS DISORDERS</td>
</tr>
<tr>
<td>647</td>
<td>Applied Physiology</td>
</tr>
<tr>
<td>647</td>
<td>Cushing’s Syndrome</td>
</tr>
<tr>
<td>650</td>
<td>Adrenal Insufficiency</td>
</tr>
<tr>
<td>652</td>
<td>Congenital Adrenal Hyperplasia</td>
</tr>
<tr>
<td>655</td>
<td>ENDOCRINE DISORDERS OF CALCIUM METABOLISM</td>
</tr>
<tr>
<td>655</td>
<td>Physiology of Calcium Metabolism</td>
</tr>
<tr>
<td>656</td>
<td>Anatomy of Parathyroid Gland</td>
</tr>
<tr>
<td>656</td>
<td>Hormones of Parathyroid Gland</td>
</tr>
<tr>
<td>656</td>
<td>Actions of Parathyroid Hormone</td>
</tr>
<tr>
<td>656</td>
<td>Mechanism of Action of Parathyroid Hormone</td>
</tr>
<tr>
<td>656</td>
<td>Regulation of Parathyroid Hormone</td>
</tr>
<tr>
<td>656</td>
<td>Applied Physiology</td>
</tr>
<tr>
<td>657</td>
<td>Disorders of Calcium Metabolism</td>
</tr>
<tr>
<td>658</td>
<td>Pseudohypoparathyroidism</td>
</tr>
<tr>
<td>659</td>
<td>Hypercalcemia</td>
</tr>
<tr>
<td>662</td>
<td>DIABETES MELLITUS</td>
</tr>
<tr>
<td>662</td>
<td>Etiological Classification of Diabetes Mellitus</td>
</tr>
<tr>
<td>662</td>
<td>Diagnostic Criteria for Diabetes</td>
</tr>
<tr>
<td>662</td>
<td>Mellitus in Children and Adolescents</td>
</tr>
<tr>
<td>662</td>
<td>Impaired Glucose Tolerance and</td>
</tr>
<tr>
<td>662</td>
<td>Impaired Fasting Glycemia</td>
</tr>
<tr>
<td>663</td>
<td>Type 1 Diabetes Mellitus</td>
</tr>
<tr>
<td>670</td>
<td>Type 2 Diabetes Mellitus in Children</td>
</tr>
<tr>
<td>670</td>
<td>Neonatal Diabetes Mellitus</td>
</tr>
<tr>
<td>671</td>
<td>A JUNIOR RESIDENT MUST KNOW IMPORTANT LABORATORY INFORMATION IN PEDIATRIC ENDOCRINOLOGY</td>
</tr>
<tr>
<td>672</td>
<td>Chapter 13. Fluid and Electrolyte Disturbances</td>
</tr>
<tr>
<td>672</td>
<td>J Balaji, S Thangavelu, Indumathy Santhanam</td>
</tr>
<tr>
<td>672</td>
<td>Physiology: Fluids</td>
</tr>
<tr>
<td>673</td>
<td>Fluid Compartments</td>
</tr>
<tr>
<td>674</td>
<td>Loss of Water</td>
</tr>
<tr>
<td>675</td>
<td>Electrolytes</td>
</tr>
<tr>
<td>679</td>
<td>Hyponatremia</td>
</tr>
<tr>
<td>683</td>
<td>Hypernatremia</td>
</tr>
<tr>
<td>684</td>
<td>Hypokalemia</td>
</tr>
<tr>
<td>686</td>
<td>Hyperkalemia</td>
</tr>
<tr>
<td>688</td>
<td>Hypocalcemia</td>
</tr>
<tr>
<td>692</td>
<td>Chapter 14. Acid-Base Balance and its Disturbances</td>
</tr>
<tr>
<td>692</td>
<td>J Balaji, S Thangavelu, Indumathy Santhanam</td>
</tr>
<tr>
<td>692</td>
<td>Acid-Base Homeostasis</td>
</tr>
<tr>
<td>693</td>
<td>Sources of Acids</td>
</tr>
<tr>
<td>694</td>
<td>Disturbances of Acid-Base Status</td>
</tr>
<tr>
<td>694</td>
<td>Metabolic and Respiratory Disturbances</td>
</tr>
<tr>
<td>697</td>
<td>Sampling for Arterial Blood Gas</td>
</tr>
<tr>
<td>697</td>
<td>Interpretation of Arterial Blood Gas</td>
</tr>
<tr>
<td>701</td>
<td>Chapter 15. Pediatric Resuscitation and Emergency Medicine</td>
</tr>
<tr>
<td>701</td>
<td>Indumathy Santhanam</td>
</tr>
<tr>
<td>701</td>
<td>Overview</td>
</tr>
<tr>
<td>701</td>
<td>Airway</td>
</tr>
<tr>
<td>702</td>
<td>Breathing</td>
</tr>
<tr>
<td>703</td>
<td>Circulation</td>
</tr>
<tr>
<td>708</td>
<td>Disability</td>
</tr>
<tr>
<td>708</td>
<td>Do Not Ever Forget Glucose</td>
</tr>
<tr>
<td>708</td>
<td>Exposure</td>
</tr>
<tr>
<td>709</td>
<td>Documentation</td>
</tr>
<tr>
<td>711</td>
<td>BAG VALVE MASK VENTILATION (SELF-INFLATING VENTILATION DEVICE)</td>
</tr>
<tr>
<td>712</td>
<td>AIRWAY EQUIPMENT AND TECHNIQUES</td>
</tr>
<tr>
<td>713</td>
<td>LARYNGEAL MASK AIRWAY</td>
</tr>
<tr>
<td>714</td>
<td>TECHNIQUE OF GOOD QUALITY CHEST COMPRESSIONS</td>
</tr>
<tr>
<td>716</td>
<td>STRIDOR</td>
</tr>
<tr>
<td>719</td>
<td>BREATHING</td>
</tr>
<tr>
<td>719</td>
<td>Bronchiolitis</td>
</tr>
<tr>
<td>719</td>
<td>Asthma</td>
</tr>
<tr>
<td>719</td>
<td>Pneumonia</td>
</tr>
<tr>
<td>719</td>
<td>Pulmonary edema</td>
</tr>
<tr>
<td>720</td>
<td>Respiratory Distress</td>
</tr>
<tr>
<td>723</td>
<td>HYPOVOLEMIC SHOCK</td>
</tr>
<tr>
<td>723</td>
<td>Pathophysiology</td>
</tr>
<tr>
<td>724</td>
<td>SEPTIC SHOCK</td>
</tr>
<tr>
<td>724</td>
<td>Pathophysiology</td>
</tr>
<tr>
<td>724</td>
<td>Management</td>
</tr>
</tbody>
</table>
RECOGNITION AND MANAGEMENT OF DENGUE 727
Objectives 727
Pathophysiology 727
Management 728
Dengue with Warning Signs 729

GENERALIZED TONIC-CLONIC SEIZURES AND STATUS EPILEPTICUS 731
Generalized Tonic-Clonic Seizures 731
Status Epilepticus 731
Disability 732

OXYGEN DELIVERY DEVICES USED IN CHILDREN WHO ARE SPONTANEOUSLY BREATHING 735
Non-rebreathing Mask 735
Flow Inflating Ventilation Device 735
Continuous Positive Airway Pressure 735

Chapter 16. Drug Overdose and Poisoning 737
T Murali, Shanthi Sangareddi
History 737
Assessment and Resuscitation 738
Airway and Breathing 738
Circulation 738
Disability 738
Exposure 738
Elimination or Decontamination 738
Catharsis 742
Forced Diuresis 742
Dialysis 743
Hemoperfusion 743
Antidotes 743
Paracetamol Poisoning 743
Kerosene Poisoning in Children 745
Organophosphorus Poisoning 746

Chapter 17. Common Procedures in Pediatric Practice 749
Md Salim Shakur, Indumathy Santhanam
Handwashing 749
Universal Precautions 750
Lumbar Puncture 751
Bone Marrow Aspiration 753
Nasogastric Tube Insertion 754
Urethral Catheterization 756
Suprapubic Aspiration of Urine 757
Endotracheal Intubation 758
Peripheral Vein Cannulation 760

Chapter 18. National Health Programs for Children in India 763
RV Dhakshayani, S Sundari
Programs for Communicable Diseases 763
Programs for Noncommunicable Diseases 763
National Nutritional Programs 763
Programs Related to System Strengthening or Welfare 764
National Vector-Borne Diseases Control Program 764
Common Strategies for National Vector Control Program 764
National Malaria Control Program 764
Malaria: an Overview 765
National Filaria Control Program 767
Filarialis: an Overview 768
National Kala-Azar Control Program 769
Kala-Azar: an Overview 769
National Dengue Control Program 770
Dengue: an Overview 770
Control of Dengue or Dengue Hemorrhagic Fever 770
National Japanese Encephalitis Control Program 771
Japanese Encephalitis: an Overview 772
National Leprosy Eradication Program 773
Revised National Tuberculosis Control Program 774
Tuberculosis Control Program: an Overview 775
National AIDS Control Program 777
Universal Immunization Program 779
National Nutritional Programs 780
School Health Program 782
Reproductive and Child Health Program 783
Integrated Management of Neonatal and Childhood Illness 784

Chapter 19. Pediatric Dermatology 787
Md Salim Shakur, Indumathy Santhanam
Skin Disorders in Neonates 787
Transient Vascular Phenomena 787
Benign Pustular Dermatoses 788
Congenital Abnormalities 789
Skin Disorders in Children 790
Infectious Diseases of Skin 794

Chapter 20. Joint and Bone Disorders 801
Md Salim Shakur, Indumathy Santhanam
Juvenile Idiopathic Arthritis 801
Juvenile Idiopathic Arthritis 801
Henoch-Schönlein Purpura 807
Systemic Lupus Erythematosus 810
Genetic Skeletal Diseases 814

Chapter 21. Neurology 820
Sangeetha Yogandanhan, Leema Pauline
History Taking 820
History 820
Examination 822
Higher Functions 822
Cranial Nerves 822
Motor System 824
Reflexes 826
Sensory System 828
Cortical Sensations 828
Stereognosis 828
Rombergism 828
Cerebellar Signs 828
Sphincter Function 828
Gait 829
Signs of Meningeal Irritation 830
Cranium 831
Sutural Overriding 831
Spine 832
General Examination 832
Family History 832
Neurological Examination of the Newborn 833
Investigations 834
Neurophysiology Investigations 836
Epilepsy 837
Febrile Seizures 844
Seizure Mimics (Condition that are Confused as Seizures) 844
Status Epilepticus 845
Intracranial Infection 847
Tuberculous Meningoencephalitis 852
Viral Encephalitis 853
Acute Disseminated Encephalomyelitis 854
Cerebral Palsy 854
Neurodegenerative Disorders 858
Coma and Decreased Level of Consciousness 859
Hydrocephalus 860
Neural Tube Defects 861
Neurocutaneous Syndromes 863
Movement Disorders 863
Neuromuscular Disorders 865
Acute Flaccid Paralysis 868
Floppy Infant Syndrome 868
Muscular Dystrophies 871
Neurodevelopmental Disorders 872
Autism Spectrum Disorders 872

Pyruvate Kinase Deficiency 885
Thalassemia 886
Hemoglobin E Carriers 887
HbE Disease 887
SICKLE CELL ANEMIA 894
Pathophysiology 894
Sickle Cell Trait 894
Sickle Cell Anemia 894
Aplastic Crisis 895
Approach to Bleeding 896
PLATELET DISORDERS 896
Approach to Thrombocytopenia 896
Immune Thrombocytopenic Purpura 897
Acute Immune Thrombocytopenic Purpura 897
Neonatal Thrombocytopenia 898
Platelet Function Disorders 898
COAGULATION DISORDERS 899
Hemophilia 899
Mucosal Bleeding 899
VON WILLEBRAND’S DISEASE 903
Epidemiology 903
Pathophysiology 903
Classification 903
History 904
Investigations 904
Differential Diagnosis 904
Laboratory Investigations 904
Management 904
DISSEMINATED INTRAVASCULAR COAGULATION 905
Factors Predisposing for the Development of DIC 905
Pathophysiology 905
History 905
Examination 905
Investigations 905
Complications 905
Laboratory Investigations 906
Differential Diagnosis 906
Treatment 906
ACUTE LEUKEMIAS 907
Classification 907
Acute Lymphoblastic Leukemia 907
ACUTE MYELOID LEUKEMIA 911
Etiology and Pathogenesis 911
Cytogenetics and Molecular Genetic Alteration 911
Classification 912
Clinical Features 912
Investigations 912
Cytogenetics 912
Management 912
Two-thirds of body weight is contributed by water, i.e. total body water (TBW) (Table 13.1). One-third of TBW is derived from extracellular fluid (ECF) and two-thirds from intracellular fluid (ICF) (Flowchart 13.1 and Fig. 13.1).

Objectives
1. Applied physiology of fluids
2. Serum osmolarity and tonicity
3. How do we manage loss of body fluids
4. Role played by sodium, potassium and calcium in our body
5. What happens when these electrolytes increase or decrease
6. Management of electrolyte disturbances

Physiology: Fluids

Table 13.1: Body water compartments in various ages (% of body weight).

<table>
<thead>
<tr>
<th>Preterm</th>
<th>Term newborn</th>
<th>Infant and child</th>
<th>Adult</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICF</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>ECF</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>TBW</td>
<td>80</td>
<td>70</td>
<td>65</td>
<td>60</td>
<td>55</td>
</tr>
</tbody>
</table>

(ICF: intracellular fluid; ECF: extracellular fluid; TBW: total body water)

One-third of ECF is derived from plasma and two-thirds from interstitial fluid (ISF) which surrounds the...
cells. Transcellular fluid contributes to 1.5% of body weight. The latter is fluid within the pleura, peritoneum, pericardium and cerebrospinal compartment.

Total body water constitutes around 80% of birth weight of preterms. As the preterm matures, TBW shrinks to 70% in the term neonate. During intrauterine life and soon thereafter ECF exceeds ICF. At 1 year of age, TBW drops to 60% and remains constant until puberty. Increased fat in girls during puberty leads to further drop of TBW (55%). However, the overall ICF compartment remains constant (40%) in age groups (Fig. 13.2). The gradual decrease in TBW with increasing age is reflected in the shrinking of ECF compartment.

Fat contains less water than other tissues. Hence obesity is associated with proportionately less TBW.

FLUID COMPARTMENTS

A delicate balance exists between fluid in the intravascular fluid compartment and fluid in the interstitial fluid compartment (Fig. 13.3). This balance is maintained by Starling’s forces.

Starling’s force is defined as the filtration of fluid across the wall of a capillary that is dependent on the balance between hydrostatic pressure and oncotic pressure across the capillary.

The hydrostatic pressure within the vessel pushes fluid into the interstitium at the arteriolar end of the capillaries. At the venous end, the colloid oncotic pressure leads to entry of fluid from the interstitium into the vascular compartment (Fig. 13.4). The net fluid into the interstitial space is drained into the lymphatics.

Disturbances of the equilibrium of Starling’s forces result in edema formation.

Fig. 13.1: Distribution of total body water. (ICF: intracellular fluid; ECF: extracellular fluid)

Fig. 13.2: Percentage of water in the human body at different stages of life.

Fig. 13.3: Body fluid compartments (graphical representation).

Fig. 13.4: Equilibrium between plasma and interstitial fluid.
Myocardial dysfunction leads to increased hydrostatic pressure within the pulmonary capillaries. The latter causes leakage of fluid into the alveoli (pulmonary edema, Fig. 13.5).

Failure to excrete due to acute glomerulonephritis results in increased intravascular volume and increased hydrostatic pressure in the tissues. The latter causes accumulation of fluid in the interstitium and edema.

Albumin contributes to the colloid oncotic pressure of the plasma. Loss of albumin due to nephrotic syndrome, malnutrition or liver failure, leads to retention of fluid within the interstitium thereby causing anasarca.

Increased capillary permeability due to sepsis can also cause interstitial edema.

LOSS OF WATER

The human body tends to lose water via sensible and insensible routes. Insensible water loss occurs by evaporation from the skin and respiratory tract (water evaporates when air passes through the respiratory tract). Water is lost without loss of solutes. The extent of loss via insensible route cannot be evaluated. Loss via urine, stool and sweat is categorized as sensible water loss (Fig. 13.6).

Physiological Water Loss (100 mL/kg)

Insensible water loss:
- Lungs: 15 mL/kg
- Skin: 30 mL/kg.

Sensible water loss:
- Urine: 50 mL/kg (40–70 mL/kg)
- Stool: 5 mL/kg
- Sweat: 0–20 mL/kg.

Pathological Fluid Loss

Loss of fluids can occur in various conditions. Gastrointestinal losses result from diarrhea and vomiting. Burns causes aggravate loss from skin surface. Polyuria causes dehydration and shock in diabetes. Blood loss occurs in trauma. Capillary leak and vasodilation lead to relative and absolute hypovolemia in severe sepsis (Fig. 13.7 and Flowchart 13.2).
Shock

Maintenance of the intravascular volume is important for adequate tissue perfusion. Loss of 25% of effective circulating volume results in shock. The initial sympathetic response results in tachycardia and peripheral vasoconstriction, which increases systolic blood pressure (BP). Later as compensation fails, cardiac output drops and BP falls leading to irreversible shock and cardiac arrest.

Dehydration

Dehydration is classified as no dehydration, some dehydration and severe based on clinical signs and percentage of weight loss (Table 13.2).

ELECTROLYTES

Electrolyte distribution varies. Potassium, an anion, is found predominantly in the ICF along with proteins and phosphates (cations). Sodium and chloride are the predominant anion and cation, respectively in the ECF (Table 13.3). The active extrusion of sodium from cells and influx of potassium into the cells occurs as a result of the Na⁺ K⁻ adenosine triphosphatase (ATPase) pump. The difference between intracellular and extracellular potassium causes greater negativity of the intracellular space relative to the extracellular space.

Serum concentration of an electrolyte may not reflect the total body content. This is especially true for potassium.
and phosphorus, which are both found predominantly within the intracellular space.

Table 13.3: Distribution of anions and cations in extracellular fluid (ECF) and intracellular fluid (ICF).

<table>
<thead>
<tr>
<th>Electrolytes</th>
<th>ECF (in mEq/L)</th>
<th>ICF (in mEq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium (Na⁺)</td>
<td>140</td>
<td>10</td>
</tr>
<tr>
<td>Potassium (K⁺)</td>
<td>4</td>
<td>158</td>
</tr>
<tr>
<td>Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride (Cl⁻)</td>
<td>103</td>
<td>4</td>
</tr>
<tr>
<td>Bicarbonate (HCO₃⁻)</td>
<td>25</td>
<td>10</td>
</tr>
</tbody>
</table>

Intravenous (IV) fluids are administered to maintain the intravascular compartment. Normal saline (NS) and Ringer’s lactate (RL) remain within the intravascular compartment since they are isotonic fluids. For this reason, these glucose-free isotonic fluids are preferred in the management of shock.

Definitions

Osmosis is the net movement of water, from an area of lower solute concentration to an area of higher solute concentration across a semipermeable membrane.

Sodium, an impermeable solute, exerts an osmotic force across a semipermeable membrane. Urea, which is permeable, does not exert any osmotic force and hence is defined as “ineffective osmoles”.

Osmolality or osmolarity is the measure of osmotically active particles available in a solution per kilogram of solvent.

Tonicity is the ability of ECF, to cause the movement of water into or out of a cell by osmosis. Solutes, that are permeable across the semipermeable membrane, do not contribute to tonicity (Table 13.4).

Table 13.4: Osmolality and tonicity of commercially available IV fluids.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Osmolality (mOsmol/L)</th>
<th>Sodium content (mEq/L)</th>
<th>Osmolality (compared to plasma)</th>
<th>Tonicity (with reference to cell membrane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium chloride 0.9%</td>
<td>308</td>
<td>154</td>
<td>Iso-osmolar</td>
<td>Isotonic</td>
</tr>
<tr>
<td>Sodium chloride 0.45%</td>
<td>154</td>
<td>77</td>
<td>Hypo-osmolar</td>
<td>Hypotonic</td>
</tr>
<tr>
<td>Sodium chloride 0.45% and glucose 5%</td>
<td>432</td>
<td>75</td>
<td>Hyperosmolar</td>
<td>Hypotonic</td>
</tr>
<tr>
<td>Glucose 5%</td>
<td>278</td>
<td>–</td>
<td>Iso-osmolar</td>
<td>Hypotonic</td>
</tr>
<tr>
<td>Glucose 10%</td>
<td>555</td>
<td>–</td>
<td>Hyperosmolar</td>
<td>Hypotonic</td>
</tr>
<tr>
<td>Sodium chloride 0.9% and glucose 5%</td>
<td>586</td>
<td>150</td>
<td>Hyperosmolar</td>
<td>Isotonic</td>
</tr>
<tr>
<td>Sodium chloride 0.18% and glucose 5% (marketed as Isolyte P)</td>
<td>284</td>
<td>31</td>
<td>Iso-osmolar</td>
<td>Hypotonic</td>
</tr>
<tr>
<td>Ringer’s lactate</td>
<td>278</td>
<td>131</td>
<td>Iso-osmolar</td>
<td>Isotonic</td>
</tr>
</tbody>
</table>

Osmolality can be calculated by the following formula:

\[\text{Osmolality} = 2 \times \text{Sodium} + \frac{\text{Glucose}}{18} + \frac{\text{Urea}}{6} \]

e.g.

1. Sodium = 140
 Glucose = 90
 Urea = 30
 Osmolality = \[2 \times 140 + \frac{90}{18} + \frac{30}{6} \]
 = 280 + 5 + 5 = 290 mOsmol/L

2. Sodium = 140
 Glucose = 540
 Urea = 30
 Osmolality = 280 + 30 + 5 = 315 mOsmol/L

Normal plasma osmolality ranges between 285 mOsm/kg and 295 mOsm/kg.

Measured osmolality is around 10 mOsm/kg more than the calculated osmolality. A difference greater than 10 mOsm/kg (osmolal gap) is indicative of unmeasured anions.

Increased osmolal gap due to excess anion, occurs in poisoning due to ethanol, methanol or ethylene glycol.

Regulation

Plasma osmolality is regulated by water whereas intravascular volume is regulated by sodium.

An increase in plasma osmolality sensitizes the osmoreceptors in the hypothalamus which releases...

antidiuretic hormone (ADH). ADH acts on the distal collecting tubule thereby increasing water reabsorption and decreasing water excretion (Fig. 13.8).

Increased plasma osmolality also stimulates the thirst center increasing intake of water. The resultant decrease in plasma osmolality leads to decreased ADH secretion. Less ADH results in diuresis of dilute urine.

However, volume depletion takes precedence over regulation of osmolality.

Hypovolemia stimulates both ADH and thirst, leading to water retention irrespective of the osmolality.

Fluid and Electrolyte Disturbance (Fig. 13.9)

History

Enquire for history of vomiting, diarrhea, polyuria and oliguria.

Examination

Look for signs of dehydration: Anterior fontanelle is depressed in young infants. Sunken eyes, dry tongue, dry mucosa, loss of skin turgor, absence of tears, thirst and oliguria are suggestive of dehydration. Doughy feel

Fig. 13.8: Antidiuretic hormone (ADH) and thirst maintain osmolality within narrow limits.

Fig. 13.9: Signs and symptoms of electrolyte imbalance.
of subcutaneous tissue is suggestive of hypernatremic dehydration. Hypotonia, head lag and bradycardia are indicative of coexisting hypokalemia.

Investigations

- **Complete blood count:** Sepsis
- **Serum electrolytes, chloride, bicarbonate:** Electrolyte imbalance
- **Urea, creatinine:** Renal parameters are deranged in prerenal uremia
- **Glucose:** Hypoglycemia complicates dehydration in severe acute malnutrition (SAM) children
- **Calcium:** Hypocalcemia is common in malnourished children presenting with dehydration
- **Electrocardiogram (ECG):** Potassium is lost in diarrhea. Hypokalemia can cause life-threatening bradycardia. Since K+ is an intracellular ion, serum potassium values do not reflect the extent of hypokalemia. Hence, ECG monitoring is mandatory during resuscitation of SAM kids with dehydration or hypovolemic shock.

Osmolality and urine analysis are additionally necessary in critically-ill children.

Frequent clinical assessments are essential to evaluate response to fluid therapy. Weight, rapid cardiopulmonary cerebral assessment, input-output chart and laboratory investigations will supplement the clinical assessment.

Intravenous Fluid Therapy

- Isotonic fluid bolus to correct shock, e.g. septic shock, dengue shock
- Deficit replacement, e.g. diarrheal dehydration
- Maintenance fluid: Perioperative IV fluids when nil per oral (NPO) guidelines are being enforced
- Replacement of the ongoing losses: Nasogastric aspirate or drainage from ostomies.

Shock Correction

(Refer to the chapter on “Emergency”)

Loss of fluid or blood that exceeds 25% of circulation volume leads to shock.

Effective circulating volume in children: 80 mL/kg body weight

- Loss of 25% of 80 mL/kg = 20 mL/kg (the volume of one bolus of normal saline or Ringer’s lactate).

Normal plasma osmolarity ranges between 285 mOsmol/L and 295 mOsmol/L. Fluid having osmolarity similar to plasma is termed isotonic fluid (Table 13.5).

<table>
<thead>
<tr>
<th>Types of shock</th>
<th>Clinical condition</th>
<th>Volume</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypovolemic</td>
<td>Diarrhea, vomiting, acute blood loss</td>
<td>20 mL/kg</td>
<td>20 min</td>
</tr>
<tr>
<td>Distributive shock (septic shock, anaphylactic shock, spinal shock)</td>
<td>Infection (pneumonia, abscess), drug/vaccine induced Spinal cord injury</td>
<td>20 mL/kg</td>
<td>20 min</td>
</tr>
<tr>
<td>Cardiogenic shock</td>
<td>Myocarditis, congenital heart disease</td>
<td>10 mL/kg</td>
<td>5–10 mL/kg</td>
</tr>
<tr>
<td>Dengue shock</td>
<td>Severe dengue</td>
<td>10 mL/kg</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

Dehydration

Fluids calculation is based on severity of dehydration, maintenance, requirement and deficiency (Table 13.6).

Mild dehydration for 10 kg child:

- Oral rehydration salt (ORS) is preferred, unless the child has persistent vomiting or refuses ORS.

Correction of dehydration:

- **0–6 hours:** NS/RL 40 mL/kg (400 mL) for deficit
- **7–24 hours:** Maintenance 100 mL/kg/24 hours (1,000 mL).

Moderate dehydration:

Fluid deficit is corrected in three phases:

1. **0–1 hour:** Rapid restoration of intravascular volume
 - 20 mL/kg NS/RL is given over 1 hour (200 mL)
2. **1–6 hour:** Deficit correction
 - 50 mL/kg NS/RL (500 mL)
3. **7–24 hours:** Maintenance fluid + replacement of ongoing losses
 - 100 mL/kg of \(\frac{1}{2}\) GNS + KCL at the rate of 20 mEq/1,000 mL.

Integrated Management of Neonatal and Childhood Illnesses—Management of Dehydration

- **Some dehydration:** Loss of fluid up to 5–10% of body weight (“mild and moderate” dehydration).
Chapter 13 Fluid and Electrolyte Disturbances

Treatment:
- ORS solution at the rate of 75 mL/kg over 4 hours (Plan B)
- Further management is based on reassessment after 4 hours
- Feeding is continued.

Severe dehydration is corrected with intravenous fluids (Table 13.7).

Table 13.7: Severe dehydration correction: for a child weighing 10 kg.

<table>
<thead>
<tr>
<th>WHO criteria</th>
<th>30 mL/kg (300 mL)</th>
<th>70 mL/kg (700 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant (<1 year)</td>
<td>0–1 hour</td>
<td>1–6 hours</td>
</tr>
<tr>
<td>>1 year</td>
<td>0–1/2 hours</td>
<td>½–3 hours</td>
</tr>
</tbody>
</table>

Maintenance Fluids

Dehydration, starvation ketosis and protein degradation require IV fluids to avoid electrolyte disorders (Table 13.8).

Composition of Maintenance Fluid

Commercially available maintenance fluid comprises of water, glucose, sodium and potassium. Glucose provides 20% of the total caloric requirement, thereby reducing risk of starvation ketosis and protein degradation. It also increases osmolarity. Sodium and potassium have been included to replace daily losses. Calcium bicarbonate and phosphate are not indispensable and hence not included. Ideally, IV maintenance fluids should be cheap, easily available, have a long shelf life and avoid causing complications. A child who is exclusively on maintenance fluids will lose around 0.5–1% weight everyday. Table 13.8 shows the rate of calculation of maintenance fluid.

Table 13.8: Maintenance fluid (water) requirement.

<table>
<thead>
<tr>
<th>Body weight in kg</th>
<th>Volume per 24 hours</th>
<th>Volume per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First 10 kg</td>
<td>100 mL/kg</td>
</tr>
<tr>
<td></td>
<td>11–20 kg</td>
<td>1,000 mL plus</td>
</tr>
<tr>
<td></td>
<td>50 mL/kg for each</td>
<td>2 mL/kg for each</td>
</tr>
<tr>
<td></td>
<td>1 kg >10</td>
<td>1 kg >10</td>
</tr>
<tr>
<td></td>
<td>21 kg</td>
<td>1,500 mL plus</td>
</tr>
<tr>
<td></td>
<td>20 mL/kg for each</td>
<td>1 mL/kg for each</td>
</tr>
<tr>
<td></td>
<td>1 kg >20</td>
<td>1 mL/kg for each</td>
</tr>
</tbody>
</table>

For example: Weight 10 kg: 40 mL/hr; 15 kg: 40 + 10 = 50 mL/hr; 25 kg: 40 + 20 + 5 = 65 mL/hr

Hyponatremia occurs with the use of hypotonic maintenance fluids. Critically-ill children are prone for syndrome of inappropriate ADH secretion that is aggravated by use of hypotonic solution. The resultant hyponatremia causes encephalopathy caused by influx of water into the intracellular space leading to cerebral edema, seizures and brainstem herniation.

Hyponatremic encephalopathy thus is often an iatrogenic complication due to administration of hypotonic maintenance fluids!

Half NS 0.45% with 5% dextrose is a safe option for maintenance fluid. If risk of nonosmotic ADH secretion exists, dextrose normal saline (DNS) is used as maintenance fluid. Normal saline or RL are ideal during surgical and postoperative period.

If, excess ADH secretion is anticipated, maintenance fluid is restricted to two-thirds of normal recommended volume.

Caution

If potassium is needed 5 mL of KCl = 10 mEq/L is added to 500 mL of G5½ NS. The fluid bag is labeled and mixed thoroughly prior to usage.

During fluid administration the following care is provided:
- Prescription, should include, type of fluid, volume, duration and rate of flow. The Holliday-Segar formula and rate of flow per hour are given in Table 13.8.
- The rapid cardiopulmonary cerebral assessment is documented serially.
- Weight and urine output are noted.
- Laboratory data includes daily report of serum electrolytes, urea, creatinine and hematocrit (HCT).

HYPONATREMIA

Definition

Normal range of serum sodium is between 135 mEq/L and 145 mEq/L (Fig. 13.10 and Flowchart 13.3).

Serum sodium level less than 135 mEq/L is defined as hyponatremia.

Causes

Hyponatremia can occur due to pseudohyponatremia or true hyponatremia.
True hyponatremia is associated with low measured osmolality.

Pseudohyponatremia

If serum osmolality is normal or high, pseudohyponatremia is a possibility.
- Blood sample, taken from the vein proximal to point of entry of an IV infusate through which hypotonic fluid is being administered.
- Laboratory artifact that is noted in hyperlipidemia or hyperproteinemia. Normal osmolality, rules out true hyponatremia.
- Hyponatremia has also been noted in hyperglycemia and mannitol therapy. High osmolality causes movement of water into the vascular compartment resulting in hyponatremia. The causes of true hyponatremia are shown in Table 13.9.

Since sodium concentration depends on water balance, hyponatremia is categorized as hypovolemic hyponatremia, hypervolemic hyponatremia and euvolemic hyponatremia.

Pathophysiology

The decrease in extracellular osmolality causes water to down the osmotic gradient into the intracellular space where osmolality is higher.
Entry of water into the cells of the brain from the ECF, results in cerebral edema. Since, hyponatremia develops gradually, brain cells adapt by extruding intracellular potassium, chloride and a variety of small organic molecules thereby reducing intracellular osmolality.

Clinical Features

Severity of symptoms is dependent on the magnitude and rapidity of hyponatremia. Apathy, anorexia, nausea and vomiting occur when sodium drops to less than 130 mEq/L.

Sodium less than 120 mEq/L leads to muscular twitching, headache, coma and seizures.

Physical Examination

Evaluate for the following:

- Signs of dehydration, coma, seizures
- Pigmentation, stigmata of liver or renal disease, rickets.

Investigations (Flowchart 13.4)

- Serum electrolytes, glucose, urea, creatinine, chloride, X-ray chest
- Serum osmolality, urine osmolality and urine sodium

Table 13.9: Causes of hyponatremia.

<table>
<thead>
<tr>
<th>Hypovolemic hyponatremia</th>
<th>Euvolemic hyponatremia</th>
<th>Hypervolemic hyponatremia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water ↓ and Na ↓↓ Causes:</td>
<td>Water excess Causes:</td>
<td>Water ↑↑ and Na ↑ Causes:</td>
</tr>
<tr>
<td>- Extrarenal loss (urine Na <20 mEq/L)—vomiting, diarrhea, third spacing</td>
<td>- Water intoxication: use of 5% dextrose in postoperative period, psychogenic water drinking, tap water edema</td>
<td>- Renal failure (urine Na >40 mEq/L)</td>
</tr>
<tr>
<td>- Renal loss (urine Na >20 mEq/L)—RTA, cerebral salt wasting, osmotic diuresis, DKA, diuretic therapy. Adrenal insufficiency, pseudohypoaldosteronism</td>
<td></td>
<td>- Nephrotic syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Congestive heart failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Protein-energy malnutrition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cirrhosis of liver</td>
</tr>
</tbody>
</table>
| | | - SIADH

(RTA: renal tubular acidosis; DKA: diabetic ketoacidosis; SIADH: syndrome of inappropriate antidiuretic hormone secretion)

Management (Flowchart 13.5)

- It depends upon the hydration status
- Presence of neurological symptoms
- Duration of the problem (acute < 48 hr or chronic > 48 hr).

Symptomatic Hyponatremia: Low Sodium associated with Altered Mental Status or Convulsions

Administration of 3% saline at the rate of 5 mL/kg over 30–60 minutes. This strategy increases serum sodium by 5 mEq/L and resolves symptoms.

Asymptomatic Hyponatremia

- Cerebral edema is less severe.

Rapid treatment can cause central pontine myelinolysis or even death.
Hence, correction is gradual with rise in sodium at the rate of 0.5 mEq/hr or 12 mEq/day. The sodium correction is determined as follows:

\[
\text{Sodium deficit (mEq)} = (\text{Desired Na}^- - \text{Measured Sodium}) \times \text{Weight (kg)} \times 0.6.
\]

For example, desired sodium: 125 mEq/L, measured sodium: 120 mEq/L, weight: 10 kg sodium deficit: $5 \times 10 \times 0.6 = 30$ mEq. 30 mEq is administered over 48 hours.

Hypovolemic Hyponatremia

Water and sodium are replaced using isotonic fluid viz. NS based on the severity of dehydration (Flowchart 13.5).

Isovolemic Hyponatremia

Restrict NS to two-thirds maintenance.

Hypervolemic Hyponatremia

Sodium and water are restricted.

Hyponatremia is clinically associated with syndrome of inappropriate ADH secretion (SIADH).

Causes

Meningitis, head trauma, spinal or intracranial surgery, near fatal asthma, pneumonia, tuberculosis, carbamazepine and vincristine cyclophosphamide.

Diagnostic criteria for SIADH

- Hyponatremia
- No dehydration, no edema
- Normal renal, hepatic, adrenal and thyroid function
- Urine osmolality >100 mOsm (urine is concentrated more than serum osmolality)
- Urine sodium is increased (20–40 mEq/L).

Hyponatremia with seizures: Restrict fluids, 3% saline and diuretics.

Asymptomatic hyponatremia: Restrict fluid.

Hyponatremia, seizures with shock: Correction of shock with RL or NS corrects sodium deficit.

Hyponatremia, seizures with renal failure: Dialysis and 3% saline.

Flowchart 13.5: Management of hyponatremia.

1. **Serum Na <130 mEq/L**
 - **False**
 - Improper sample
 - Pseudohyponatremia
 - **True**
 - CNS symptoms
 - Asymptomatic

2. Assess and support ABC; monitor
 - Correct with 3% saline to raise Na by 5 mEq/kg over 30–60 minutes
 - Then continue treatment as for asymptomatic child

3. **Hypovolemia (dehydrated)**
 - Replacement with NS bolus
 - Calculate the deficit + maintenance
 - 50% in 8 hours, next 50% in 16 hours

4. **Normovolemia (no edema/no dehydration)**
 - Treat the underlying disease
 - Mild to moderate water restriction
 - Severe/symptomatic especially convulsions

5. **Hypervolemia (edema)**
 - Treat the underlying disease
 - Restrict sodium and water
 - Diuretics, dialysis in renal failure

(ABC: airway-breathing-circulation; NS: normal saline)
Hyponatremia with adrenal insufficiency: Hydrocortisone.

HYPERNATREMIA

A sodium concentration more than 145 mmol/L is defined as hypernatremia. Hypernatremia is relatively less common than hyponatremia.

Causes

Osmolality and serum sodium are maintained at optimum level by two mechanisms: (1) thirst and (2) vasopressin. Young infants who cannot express thirst, have access to water or have depressed level of consciousness are vulnerable. Hypernatremia occurs as result of water deficit in relation to body’s sodium content. Diabetes insipidus (DI), that characterizes this condition, results disproportionate loss of fluids in comparison to sodium. It can also occur when excessive sodium has been ingested as seen in salt poisoning (rare).

- **Hypotonic fluid loss** (disproportionately more water is lost than electrolytes):
 - Vomiting—water loss is associated with reduced intake of water
 - Diarrhea, in association with obstructive uropathy or renal tubular dysfunction.

- **Sodium excess:**
 - Concentrated formula feeds or oral rehydration solution
 - Salt poisoning—unintentional addition of salt instead of sugar
 - Mineralocorticoid excess—hyperaldosteronism.

- **Electrolyte free water loss:** DI, reduced access to water, mentally retarded children, depressed level of consciousness or defective thirst mechanism. Hypernatremia in the neonate is a marker of either, reduced breast milk or lactation failure.

Pathophysiology

Increased sodium content in the ECF compartment leads to movement of water from ICF. The resultant alteration in intracellular tonicity and osmolality in the neuronal cell leads to shrinking of cell or cellular dehydration. The brain is most vulnerable to changes in sodium concentration. Hypernatremia leads to disturbances of consciousness. Rarely, it can cause tearing of the blood vessels and intracranial bleed.

Neurons, however, have an inherent capacity to reduce cell shrinkage. They produce osmotically active substances called “idiogenic” osmoles. Currently, these moieties have been identified as taurine and other amino acids. This protective mechanism, takes time to evolve. Hence treatment guidelines advise gradual reduction or elevation of serum sodium (not more than 0.5 mmol/hour).

Clinical Features

- Central nervous system: Lethargy, restlessness, high pitched cry, features of intracranial bleed, and convulsion and loss of consciousness.
- Volume status: Signs of dehydration are not evident. Skin may feel doughy.

Laboratory Investigations

- Hypocalcemia and hyperglycemia are two common problems
- Neuroimaging is indicated to find out whether the child has developed intracranial hemorrhage. It is also performed to exclude other causes of altered consciousness and seizures.

Management

- Seizures control (refer to chapter on “Emergency”).
- Correction of shock if identified. RL, is avoided since it is relatively hypo-osmolar in comparison to NS.
- After the correction of shock, hypernatremia is treated with half NS at a rate of 25–50% more than the maintenance rate (deficit correction + maintenance).
- Estimation of serum sodium every 4–6 hourly is vital in titrating fluid rate or sodium concentration of the IV fluid.
- Treat the underlying cause: Treat DI, salt poisoning, coexisting hypocalcemia. Hyperglycemia does not require correction.
- If seizures occur during treatment of hypernatremia, 3% NaCl is infused at the rate of 5 mL/kg over 1 hour. This will raise sodium by 5 mEq/L.
Management of Hypernatremia with Edema and Salt Excess (Flowchart 13.6)

Salt poisoning leads to hypervolemic hypernatremia. Diuretics and replacement of urine output with hypotonic fluid such as $\frac{1}{4}$ NS, is curative. If renal failure exists, dialysis is necessary.

HYPOKALEMIA

Definition

Normal serum level is 3.5–4.5 mEq/L (Fig. 13.11).

- **Serum potassium level less than 3.5 mEq/L is defined as hypokalemia.**

Causes (Flowchart 13.7)

1. **Reduced intake:** Malnutrition and potassium free intravenous fluid.
2. **Gastrointestinal loss:** Vomiting, diarrhea and laxative abuse.
3. **Renal loss:**
 - Metabolic acidosis: Renal tubular acidosis
 - Metabolic alkalosis and normal BP—Bartter’s syndrome
4. **Transcellular shifts:** Shift of potassium from ECF to ICF:
 - Metabolic alkalosis and normal or low BP—diuretic therapy
 - Metabolic alkalosis and hypertension—mineralocorticoid excess

Fig. 13.11: Signs and symptoms of hypokalemia.
Clinical Features

- **Mild hypokalemia**: Fatigue and myalgia, abdominal distention due to paralytic ileus and phantom hernia.
- **Severe hypokalemia**: Weakness of skeletal and smooth muscle function leading to hypotonia, head lag and frog leg posturing and rarely respiratory paralysis.
- **Severe life-threatening hypokalemia**: Bradycardia and cardiac arrhythmias.
- **Persistent hypokalemia**: Alkalosis is caused by increased excretion of chloride.

Investigations

- Many biochemical derangements alter potassium balance. Hence investigations must include serum electrolytes, chloride, sugar, urea, creatinine, urine electrolytes, arterial blood gas (ABG), anion gap estimation and ultrasonography (USG) of abdomen.
 - Urine potassium level less than 20 mEq/L: Nonrenal loss
 - Urine potassium level higher than 40 mEq/L: Renal loss.
- ECG changes: Prolongation of PR interval, reduction in T wave amplitude or flattening or inversion, ST depression and appearance of U wave (Fig. 13.12).

Fig. 13.12: Electrocardiogram (ECG) changes in hypokalemia (arrow indicates U wave).
Differential Diagnosis

Conditions that mimic hypokalemia include acute flaccid paralysis such as Guillain-Barre syndrome.

Hypokalemia never occurs alone and is always associated with a systemic illness.

Treatment

Severe hypokalemia: Serum level <2.5 mEq/L. Associated with paralysis and cardiac arrhythmia
- Rapid correction by infusing potassium (0.3–0.5 mEq/kg/h) over a period of 2–3 hours under cardiorespiratory monitoring.
- Potassium is diluted in NS.
- Hyperkalemia can complicate therapy.

Moderate hypokalemia: Serum level ranges between 2.5 mEq/L and 3.0 mEq/L. No cardiac arrhythmia or bradycardia or paralysis
- Potassium is added to the maintenance fluid. It is increased to 40 mEq/L.
- Serum potassium estimation is repeated after 8–12 hours.
- Addition of 5 mL of potassium chloride to 500 mL of maintenance fluid (D5 ½ NS) will result in a concentration of 20 mEq/L of potassium. Addition of 10 mL will increase potassium content to 40 mEq/L.
- Serum levels are verified every 12 hours and replacement is titrated.

Mild hypokalemia: Serum level ranges between 3.0 mEq/L and less than 3.5 mEq/L. No cardiac arrhythmia or paralysis
- Oral potassium chloride solution or dietary supplements such as orange juice or coconut water is advised. If dietary supplements fail to hypokalemia, is corrected using oral potassium chloride solution. Standard oral KCl solution 15 mL contains 20 mEq of potassium.
- Potassium citrate solution is used when acidosis is associated with hypokalemia.

General Principles
- Oral replacement is recommended in the absence of paralysis or arrhythmia.
- No formula is available to calculate the potassium replacement. Total concentration should not exceed 40 mEq/L to avoid the risk of phlebitis and pain. Higher concentration is infused through the central venous catheter under ECG monitoring.
- Potassium solutions cannot be given rapidly. It is administered as a dilute solution preferably in saline.

Prior to infusing potassium, urine output and renal function should be checked.

- If possible, offending drug should be stopped if the primary illness permits.
- The primary disease is treated concurrently (control of diarrhea, treatment of RTA or Bartter’s syndrome). Once the serum level is increased to more than 3.0, and the child can retain oral intake, oral supplementation can be initiated.

Potassium Preparations
- Injection potassium chloride 15% 10 mL = 1.5 g KCl = 20 mEq; 1 mL = 2 mEq.
- Syrup Potchlor
 Potassium chloride solution: 5 mL = 1.33 mEq/mL.

HYPERKALEMIA (FIG. 13.13)

Potassium plays a major role in regulating electrical activity (Fig. 13.14).

Potassium and sodium are needed to maintain the membrane potential across the cell membrane (Fig. 13.15).

Fig. 13.13: Signs and symptoms of hyperkalemia.
The concentration differences between K^+ and Na^+ across cell membranes create an electrochemical gradient known as the membrane potential. Adenosine triphosphate (ATP) maintains the membrane potential.

Fig. 13.14: A simplified model of the sodium (Na^+)-potassium (K^+) ATPase pump.

Disturbances in potassium content can cause life-threatening arrhythmias.

The normal range of potassium is 3.5–5 mEq/L.

Serum potassium level greater than 5.5 mEq/L is termed as hyperkalemia.

Causes (Fig. 13.16)

Spurious Hyperkalemia

Spurious (false) hyperkalemia occur when the collected blood sample undergoes hemolysis. Since potassium is the predominant cation within the ICF compartment (cells), lysis of the cells leads to release of potassium.

Investigation and Monitoring

Serum electrolytes, ABG, urea, creatinine are necessary to evaluate cause of hyperkalemia. However, investigation reports should not delay the initiation of therapy. ECG monitoring is mandatory till serum potassium decreases to safer levels.

ECG changes: Peaked T wave, prolonged P-R interval, ST segment depression and wide QRS complex (Fig. 13.17 and Table 13.10).

Therapy

Serum potassium level more than 5.5 mEq/L is a medical emergency. Treatment is instituted without delay.

Intravenous Calcium Gluconate

0.5–1.0 mL/kg of calcium gluconate, is diluted with equal quantity of 5% dextrose and given as a slow IV for over 10 minutes. Cardiac monitoring is essential during and after the infusion. The infusion is stopped if bradycardia...
is noted. Although, calcium therapy does not alter serum “K” level, it acts by protecting the myocardium from the toxic effects of hyperkalemia.

Intravenous Sodium Bicarbonate (8.4%)

Sodium bicarbonate (8.4%), 1–2 mEq/kg is diluted with equal volume of 5% GDW and administered over 10 minutes. To avoid precipitation the IV site is flushed between the calcium and bicarbonate infusion.

Nebulized Salbutamol

This is given in the usual dose as for asthma and can be repeated hourly. Salbutamol respiratory solution 1.25 mg for less than 1 year, 2.5 mg between 1 year and 5 years and 5 mg above 5 years.

Insulin and Dextrose

The combination of insulin and glucose works within 30 minutes. The addition of six units of short-acting insulin to 100 mL of 25% dextrose is infused at the rate of 2 mL/kg as a slow IV over 1 hour. Blood sugar is monitored.

Furosemide

It is administered, at the dose of 1–2 mg/kg IV, provided renal function is normal and perfusion is adequate.

Kayexalate

Kayexalate (1 g/kg/dose) is given either orally or rectally. The onset of action takes several hours to take effect. It may be repeated. Although, it is considered very useful in the management of hyperkalemia, it is expensive and carries the risk of sodium overload.

Dialysis

If potassium levels rise rapidly despite these measures, dialysis is an option. The latter is particularly useful if renal failure is causative.

If hyperkalemia is secondary to adrenal insufficiency, hydrocortisone 10 mg/kg IV is initiated.

Management (Flowchart 13.8)

Flowchart 13.8: Approach to hyperkalemia.

- Hyperkalemia (>5.5 mEq/L)
 - Exclude spurious hyperkalemia
 - ECG monitoring
 - ABG, urea, creatinine
 - Look for symptoms/causes
 - ECG changes/risk factors
 - Serum K⁺ >6.0 mEq/L or 5.5–6.0 with risk factors
 - Stepwise approach
 - Discontinue K containing fluids
 - Treat the cause
 - Continue monitoring
 - Dialysis

HYPOCALCEMIA

Definition

Normal serum calcium level is 9–11 mg/dL. Total calcium less than 7.5 mg/dL or ionized calcium level less than 4 mg or 1 mmol/L needs therapy. Hypoalbuminemia, may lead to reduction in total calcium levels, however, ionized calcium level may be normal. Hence measuring ionized calcium is important in such states. Ionized calcium may also be low in alkalosis.
Causes

Neonatal Period

Early onset (within first 3 days of life): Prematurity, infant of diabetic mothers.

Late onset: At the end of first week of life.

High phosphate intake due to undiluted cow milk feeding, hypomagnesemia, and maternal vitamin D deficiency states are causative.

Children

- Infants: DiGeorge syndrome, maternal vitamin D deficiency, cow milk feeding, magnesium deficiency
- Hypoparathyroidism
- Pseudohypoparathyroidism
- Renal failure
- Vitamin D-dependent rickets type 1
- IV bicarbonate therapy/citrate products
- Acute pancreatitis.

Clinical Features

Muscular pain and cramps progress to numbness and tickling sensation in the hands and feet. A positive Chvostek’s or Trousseau’s sign, laryngeal and carpopedal spasms are other classical signs of hypocalcemia. Neonates, manifest with jitteriness, multifocal clonic convulsions and rarely ECG abnormalities, dysrhythmias or heart failure (Table 13.10). Long standing hypocalcemia can manifest with late and irregular teeth eruption.

Table 13.10: Electrocardiogram (ECG) manifestation of electrolyte imbalances.

<table>
<thead>
<tr>
<th>PR interval</th>
<th>Short</th>
<th>Prolonged</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Think pre-excitation syndromes such as Wolff-Parkinson-White)</td>
<td>High K</td>
<td>Low Ca</td>
</tr>
<tr>
<td>QRS duration</td>
<td>Narrow</td>
<td>Wide (>100 msec)</td>
</tr>
<tr>
<td>Low K</td>
<td>High K</td>
<td>High Ca</td>
</tr>
<tr>
<td>Low Ca</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>QTc interval</td>
<td>Short (<350 msec)</td>
<td>Prolonged (>440 msec)</td>
</tr>
<tr>
<td>High Ca</td>
<td>Low K</td>
<td>Low Ca</td>
</tr>
<tr>
<td>ST segment</td>
<td>Depressed</td>
<td>Elevated</td>
</tr>
<tr>
<td>Low K</td>
<td>High K</td>
<td></td>
</tr>
<tr>
<td>High Ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T wave</td>
<td>Peaked/tall</td>
<td>Flattened</td>
</tr>
<tr>
<td>High K</td>
<td>Low K</td>
<td></td>
</tr>
<tr>
<td>U wave</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Normal</td>
<td>Low K</td>
<td>Low Ca</td>
</tr>
<tr>
<td>Heart rate</td>
<td>Slow</td>
<td>Fast</td>
</tr>
<tr>
<td>(Bradyarrhythmias, nodal block)</td>
<td>(tachydysrhythmia)</td>
<td></td>
</tr>
<tr>
<td>High K</td>
<td>Low K</td>
<td>Low Ca</td>
</tr>
<tr>
<td>High Ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>QTc prolonged (hallmark)</td>
<td>QTc shortened (hallmark)</td>
</tr>
<tr>
<td>U wave</td>
<td>ST segment depression and shortening</td>
<td></td>
</tr>
<tr>
<td>Heart blocks, ventricular dysrhythmias, torsades de pointes</td>
<td>QRS widening</td>
<td></td>
</tr>
<tr>
<td>Rare: Bradyarrhythmias, bundle branch blocks, high degree AV blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Early to late findings:</td>
<td></td>
</tr>
<tr>
<td>T wave: Decreased amplitude</td>
<td>Early to late findings:</td>
<td></td>
</tr>
<tr>
<td>T wave: Flat or inverted</td>
<td>T wave: tall, then “peaked” (symmetrical)</td>
<td></td>
</tr>
<tr>
<td>ST segment depression</td>
<td>P wave flattening</td>
<td></td>
</tr>
<tr>
<td>U wave</td>
<td>PR interval prolonged</td>
<td></td>
</tr>
<tr>
<td>QTc prolonged (at risk for VT or torsades de pointes)</td>
<td>QRS widening</td>
<td></td>
</tr>
<tr>
<td>Mg derangements: Nonspecific ECG findings; often coexist with Ca derangements. Classic teaching: Low Mg level → QTc prolongation → torsades de pointes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jaypee Brothers
Treatment (Fig. 13.18 and Flowchart 13.9)

- **Asymptomatic**: Oral calcium is prescribed at the dose of 50 mg/kg day.
- **Symptomatic hypocalcemia**: Calcium is given intravenously in the dose of 1 mL/kg of calcium gluconate as a slow infusion over 30 minutes.
 - **Caution**:
 - Ensure patency of IV access, extravasation of calcium can cause necrosis.
 - Sudden push will precipitate bradycardia. Hence, it is diluted with D5 and infused over 20 minutes.
 - Calcium precipitates with bicarbonate. Combining it with bicarbonate containing solutions is avoided.
- **1 mL of calcium gluconate contains 9 mg/mL of calcium**
- **Refractory hypocalcemia** occurs in:
 - Vitamin D deficiency
 - Phosphate loading due to undiluted cow milk feeding in newborn or early infancy
 - Renal failure
 - Hypoparathyroidism
 - Hypomagnesemia.
- **Check serum phosphate**: Normal levels are noted in vitamin D deficiency. Elevated levels are characteristic.

Flowchart 13.9: Approach to hypocalcemia.
in renal failure, phosphate loading due to undiluted cow milk feeding and hypoparathyroidism. In all these conditions, apart from treating the underlying conditions, vitamin D and calcium are given.

- Suspect hypomagnesemia, when hypocalcemia is refractory. Hypokalemia often coexists.

Key Points
1. Electrolytes are important for the normal functioning of the nerve, heart and muscle cells by maintaining voltages across their cell membranes and carrying electrical impulses.
2. Kidneys work to keep the electrolyte concentrations in blood constant.
3. If electrolytes are less than normal, they should be replaced.
4. Sodium levels affect brain function.
5. Calcium levels affect the heart predominantly.
6. Potassium levels impact the function of the skeletal, smooth and cardiac muscle.

Bibliography